Trees in tournaments

François Dross and Frédéric Havet

COATI, I3S, CNRS, INRIA, Univ. Côte d'Azur

Sophia Antipolis, France

Struco Meeting, May 15-17 2019

Tournament

tournament $=$ Orientation of a complete graph.

transitive tournament $=$ tournament with no directed cycle $T T_{k}=$ transitive tournament of order k.

Unavoidability

n-unavoidable $=$ contained in every tournament of order n $\operatorname{unvd}(D):$ unavoidability $=\operatorname{minimum} n$ s.t. D is n-unavoidable.

$$
\operatorname{unvd}(D)<+\infty \text { if and only if } D \text { is acyclic. }
$$

- unavoidable \Rightarrow contained in $T T_{n} \Rightarrow$ no directed cycle
\longleftarrow every acyclic digraph of order k is contained in $T T_{k}$.

Upper bounds on unvd $\left(T T_{k}\right)$

$$
\operatorname{unvd}\left(T T_{k}\right) \leq 2 \operatorname{unvd}\left(T T_{k-1}\right)
$$

[[Proof: A tournament of order 2 unvd $\left(T T_{k-1}\right)$ contains a vertex with $\left.\left.d^{+} \geq \operatorname{unvd}\left(T T_{k-1}\right).\right]\right]$

Corollary unvd $\left(T T_{k}\right) \leq 2^{k-1}$.
$\operatorname{unvd}\left(T T_{1}\right)=1, \operatorname{unvd}\left(T T_{2}\right)=2, \operatorname{unvd}\left(T T_{3}\right)=4$, and $\operatorname{unvd}\left(T T_{4}\right)=8$ (because of Paley tournament).
Reid and Parker, $1970: \operatorname{unvd}\left(T T_{5}\right)=14, \operatorname{unvd}\left(T T_{6}\right)=28$.
Sanchez-Flores, 1994: unvd $\left(T T_{7}\right)=54$.

Corollary unvd $\left(T T_{k}\right) \leq 54 \times 2^{k-7}($ for $k \geq 7)$.

Lower bounds on unvd $\left(T T_{k}\right)$

Theorem (Erdős and Moser, 1964) unvd $\left(T T_{k}\right)>2^{(k-1) / 2}$.
[[Proof: Random tournament T on $n=2^{(k-1) / 2}$ vertices.
Probability that $T\left\langle v_{1}, \ldots, v_{k}\right\rangle$ is transitive with hamiltonian dipath $\left(v_{1}, \ldots, v_{k}\right)$ is $\left(\frac{1}{2}\right)^{\binom{k}{2}}$.
Expected number of transitive tournaments : $\frac{n!}{(n-k)!}\left(\frac{1}{2}\right)^{\binom{k}{2}}$

$$
<n^{k}\left(\frac{1}{2}\right)^{\binom{k}{2}} \leq 1 .
$$

Simple Moment Method, n-tournament with no $T T_{k}$.
Theorem For every $C>1, C \times \operatorname{unvd}\left(T T_{k}\right)>2^{(k+1) / 2}$ if n is large enough.
[[Use Local Lemma]]

Oriented paths in tournament

\vec{P}_{n} : directed path on n vertices.
Theorem (Redei, 1934) Every tournament has a directed Hamiltonian path. $\operatorname{unvd}\left(\vec{P}_{n}\right)=n$.

Theorem (H. and Thomassé, 2000). unvd $(P)=|P|$ if $|P| \geq 8$.
T tournament, P oriented path with $|T|=|P|$.
T contains P unless $T \in\left\{C_{3}, R_{5}, P_{7}\right\}$ and P is antidirected.

Oriented cycles in tournament

Theorem (Thomason, 1986).
If C is a non-directed cycle with $|C| \geq \mathbf{2}^{\mathbf{1 2 8}}$, then $\operatorname{unvd}(C)=|C|$.

Theorem (H. , 2000).
If C is an non-directed cycle with $|C| \geq \mathbf{6 8}$, then $\operatorname{unvd}(C)=|C|$.

Conjecture
If C is an non-directed cycle with $|C| \geq \mathbf{9}$, then $\operatorname{unvd}(C)=|C|$.

Oriented trees in tournament

Conjecture (Sumner, 1972).
If T is an oriented tree or order n, then $\operatorname{unvd}(T) \leq 2 n-2$.

Oriented trees in tournament

Conjecture (Sumner, 1972).
If T is an oriented tree or order n, then $\operatorname{unvd}(T) \leq 2 n-2$.

Oriented trees in tournament

Conjecture (Sumner, 1972).
If T is an oriented tree or order n, then $\operatorname{unvd}(T) \leq 2 n-2$.

Universal digraphs

Theorem (Gallai 1968, Hasse 1964, Roy 1967, Vitaver 1962)
If $\chi(D) \geq n$, then D contains a directed path of order n.
n-universal $=$ contained in every digraph D with $\chi(D) \geq n$.
Theorem (Erdős, 1959)
For all k, g, there are graphs with $\chi \geq k$ and girth $\geq g$.
universal digraph must be the orientation of a forest.
Theorem (Burr, 1980)
Every oriented forest of order n is n^{2}-universal.
Addario-Berry et al. 2013 improved to $\frac{1}{2} n^{2}-\frac{1}{2} n+1$-universal.
Conjecture (Burr, 1982)
Every oriented forest of order n is $(2 n-2)$-universal.

Oriented trees in tournament

Conjecture (Sumner, 1972).
If T is an oriented tree or order n, then $\operatorname{unvd}(T) \leq 2 n-2$.

If T is an oriented tree of order n, then $\operatorname{unvd}(T) \leq$
(Häggkvist and Thomason, 1991) $12 n \quad(4+o(1)) n$
(H. and Thomassé, 2000) $\quad \frac{7}{2} n-\frac{5}{2}$
(El Sahili, 2004)
$3 n-3$
(Kühn, Mycroft and Osthus, 2011)
$2 n-2$ for n large.

Theorem (H. and Thomassé, 2000).
If A is an arborescence, then $\operatorname{unvd}(A) \leq 2|A|-2$.

Beyond Sumner's conjecture

Conjecture (H. and Thomassé, 2000).
If T is an oriented tree of order n with k leaves, then

$$
\operatorname{unvd}(T) \leq n+k-1
$$

Evidences : True for $k \leq 3 . \quad$ (Ceroi and H., 2004).

$$
\begin{gathered}
\text { True for a large class of trees. } \\
\operatorname{unvd}(T) \leq n+2^{512 k^{3}} . \text { (Häggkvist and Thomason, 1991) }
\end{gathered}
$$

Our results

Theorem (Dross and H. , 2018).
If A is an out-arborescence of order n with k out-leaves, then $\quad \operatorname{unvd}(A) \leq n+k-1$.

Theorem (Dross and H. , 2018).
If T is a tree of order n with k leaves, then

$$
\operatorname{unvd}(T) \leq\left\{\begin{array}{l}
\frac{3}{2} n+\frac{3}{2} k-2 \\
\end{array}\right.
$$

Our results

Theorem (Dross and H. , 2018).
If A is an out-arborescence of order n with k out-leaves, then $\quad \operatorname{unvd}(A) \leq n+k-1$.

Theorem (Dross and H. , 2018).
If T is a tree of order n with k leaves, then

$$
\operatorname{unvd}(T) \leq\left\{\begin{array}{lc}
\frac{3}{2} n+\frac{3}{2} k-2 & \Rightarrow \text { Sumner holds } \\
& \text { when } k \leq n / 3 \\
&
\end{array}\right.
$$

Our results

Theorem (Dross and H. , 2018).
If A is an out-arborescence of order n with k out-leaves, then $\quad \operatorname{unvd}(A) \leq n+k-1$.

Theorem (Dross and H. , 2018).
If T is a tree of order n with k leaves, then

$$
\operatorname{unvd}(T) \leq\left\{\begin{array}{l}
\frac{3}{2} n+\frac{3}{2} k-2 \\
\frac{9}{2} n-\frac{5}{2} k-\frac{9}{2}
\end{array}\right.
$$

Our results

Theorem (Dross and H. , 2018).
If A is an out-arborescence of order n with k out-leaves,

$$
\text { then } \quad \operatorname{unvd}(A) \leq n+k-1 .
$$

Theorem (Dross and H. , 2018).
If T is a tree of order n with k leaves, then

$$
\operatorname{unvd}(T) \leq\left\{\begin{array}{l}
\frac{3}{2} n+\frac{3}{2} k-2 \\
\frac{9}{2} n-\frac{5}{2} k-\frac{9}{2}
\end{array}\right\} \Longrightarrow \frac{21}{8} n-\frac{47}{16}
$$

Our results

Theorem (Dross and H. , 2018).
If A is an out-arborescence of order n with k out-leaves,

$$
\text { then } \quad \operatorname{unvd}(A) \leq n+k-1
$$

Theorem (Dross and H. , 2018).
If T is a tree of order n with k leaves, then

$$
\operatorname{unvd}(T) \leq\left\{\begin{array}{l}
\frac{3}{2} n+\frac{3}{2} k-2 \\
\frac{9}{2} n-\frac{5}{2} k-\frac{9}{2} \\
n+144 k^{2}-280 k+124
\end{array}\right\} \Longrightarrow \frac{21}{8} n-\frac{47}{16}
$$

Median orders

median order : $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ s.t. $\left|\left\{\left(v_{i}, v_{j}\right): i<j\right\}\right|$ is maximum.
Proposition : If $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a median order of T, then
(M1) $\left(v_{i}, v_{i+1}, \ldots, v_{j}\right)$ is a median order of $T\left\langle\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}\right\rangle$;
(M2) v_{i} dominates at least half of the vertices v_{i+1}, \ldots, v_{j}, and v_{j} is dominated by at least half of the vertices v_{i}, \ldots, v_{j-1}.

Median orders

median order : $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ s.t. $\left|\left\{\left(v_{i}, v_{j}\right): i<j\right\}\right|$ is maximum.

Proposition: If $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a median order of T, then
(M1) $\left(v_{i}, v_{i+1}, \ldots, v_{j}\right)$ is a median order of $T\left\langle\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}\right\rangle$;
(M2) v_{i} dominates at least half of the vertices v_{i+1}, \ldots, v_{j}, and v_{j} is dominated by at least half of the vertices v_{i}, \ldots, v_{j-1}.

Median orders

median order : $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ s.t. $\left|\left\{\left(v_{i}, v_{j}\right): i<j\right\}\right|$ is maximum.

Proposition: If $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a median order of T, then
(M1) $\left(v_{i}, v_{i+1}, \ldots, v_{j}\right)$ is a median order of $T\left\langle\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}\right\rangle$;
(M2) v_{i} dominates at least half of the vertices v_{i+1}, \ldots, v_{j}, and v_{j} is dominated by at least half of the vertices v_{i}, \ldots, v_{j-1}.

Arborescences: the greedy procedure

A out-arborescence with root r, n nodes, k out-leaves.
$\left(v_{1}, \ldots, v_{m}\right)$ median order of T with $|T|=m=n+k-1$.
Set $\phi(r)=v_{1}$.
For $i=1$ to m, do

- if v_{i} is not hit, skip; $\quad v_{i}$ is failed $\left(v_{i} \in F\right)$
- if v_{i} is hit, let $a_{i}=\phi^{-1}\left(v_{i}\right)$;
assign the $\left|N^{+}\left(a_{i}\right)\right|$ first not yet hit out-neighbours of v_{i} in $\left\{v_{i+1}, \ldots, v_{m}\right\}$ to the sons of a_{i} (according to some predefined order);

Arborescences: the greedy procedure

A out-arborescence with root r, n nodes, k out-leaves.
$\left(v_{1}, \ldots, v_{m}\right)$ median order of T with $|T|=m=n+k-1$.
Set $\phi(r)=v_{1}$.
For $i=1$ to m, do

- if v_{i} is not hit, skip; $\quad v_{i}$ is failed $\left(v_{i} \in F\right)$
- if v_{i} is hit, let $a_{i}=\phi^{-1}\left(v_{i}\right)$;
assign the $\left|N^{+}\left(a_{i}\right)\right|$ first not yet hit out-neighbours of v_{i} in $\left\{v_{i+1}, \ldots, v_{m}\right\}$ to the sons of a_{i} (according to some predefined order);

Arborescences: the greedy procedure

A out-arborescence with root r, n nodes, k out-leaves.
$\left(v_{1}, \ldots, v_{m}\right)$ median order of T with $|T|=m=n+k-1$.
Set $\phi(r)=v_{1}$.
For $i=1$ to m, do

- if v_{i} is not hit, skip; $\quad v_{i}$ is failed $\left(v_{i} \in F\right)$
- if v_{i} is hit, let $a_{i}=\phi^{-1}\left(v_{i}\right)$;
assign the $\left|N^{+}\left(a_{i}\right)\right|$ first not yet hit out-neighbours of v_{i} in $\left\{v_{i+1}, \ldots, v_{m}\right\}$ to the sons of a_{i} (according to some predefined order);

Arborescences: the greedy procedure

A out-arborescence with root r, n nodes, k out-leaves.
$\left(v_{1}, \ldots, v_{m}\right)$ median order of T with $|T|=m=n+k-1$.
Set $\phi(r)=v_{1}$.
For $i=1$ to m, do

- if v_{i} is not hit, skip; $\quad v_{i}$ is failed $\left(v_{i} \in F\right)$
- if v_{i} is hit, let $a_{i}=\phi^{-1}\left(v_{i}\right)$;
assign the $\left|N^{+}\left(a_{i}\right)\right|$ first not yet hit out-neighbours of v_{i} in $\left\{v_{i+1}, \ldots, v_{m}\right\}$ to the sons of a_{i} (according to some predefined order);

Arborescences: the greedy procedure

A out-arborescence with root r, n nodes, k out-leaves.
$\left(v_{1}, \ldots, v_{m}\right)$ median order of T with $|T|=m=n+k-1$.
Set $\phi(r)=v_{1}$.
For $i=1$ to m, do

- if v_{i} is not hit, skip; $\quad v_{i}$ is failed $\left(v_{i} \in F\right)$
- if v_{i} is hit, let $a_{i}=\phi^{-1}\left(v_{i}\right)$;
assign the $\left|N^{+}\left(a_{i}\right)\right|$ first not yet hit out-neighbours of v_{i} in $\left\{v_{i+1}, \ldots, v_{m}\right\}$ to the sons of a_{i} (according to some predefined order);

Arborescences: the greedy procedure

A out-arborescence with root r, n nodes, k out-leaves.
$\left(v_{1}, \ldots, v_{m}\right)$ median order of T with $|T|=m=n+k-1$.
Set $\phi(r)=v_{1}$.
For $i=1$ to m, do

- if v_{i} is not hit, skip; $\quad v_{i}$ is failed $\left(v_{i} \in F\right)$
- if v_{i} is hit, let $a_{i}=\phi^{-1}\left(v_{i}\right)$;
assign the $\left|N^{+}\left(a_{i}\right)\right|$ first not yet hit out-neighbours of v_{i} in $\left\{v_{i+1}, \ldots, v_{m}\right\}$ to the sons of a_{i} (according to some predefined order);

Arborescences : analysis

node a is active for i if $\phi(a) \in\left\{v_{1}, \ldots, v_{i}\right\}$ and it has a son b that is not embedded in $\left\{v_{1}, \ldots, v_{i}\right\}$.
For $v_{i} \in F$, let ℓ_{i} be the largest index such that $a_{\ell_{i}}$ is active for i. Set $I_{i}=\left\{v_{\ell_{i+1}}, \ldots, v_{i}\right\}$.

Claim 1: If $v_{i} \in F$, then $\left|I_{i} \cap F\right| \leq\left|I_{i} \cap \phi(L)\right| . \quad L=$ \{out-leaves $\}$.

Claim 2: If $v_{i}, v_{j} \in F$, then either $I_{i} \cap I_{j}=\emptyset$, or $I_{i} \subseteq l_{j}$, or $I_{j} \subseteq I_{i}$.
M : the set of indices i such that $v_{i} \in F$ and I_{i} is maximal for inclusion.
$|F|=\sum_{i \in M}\left|I_{i} \cap F\right| \leq \sum_{i \in M}\left|I_{i} \cap \phi(L)\right| \leq|\phi(L)|=|L| \leq k-1$.
$\operatorname{unvd}(A) \leq \frac{3}{2} n+\frac{3}{2} k-2$: the downward forest
A : tree rooted in r with n nodes and k leaves.

unvd $(A) \leq \frac{3}{2} n+\frac{3}{2} k-2$: the downward forest
A : tree rooted in r with n nodes and k leaves. upward arcs : arcs directed away from the root downward arcs : arcs directed towards the root

unvd $(A) \leq \frac{3}{2} n+\frac{3}{2} k-2$: the downward forest
A : tree rooted in r with n nodes and k leaves.
upward arcs : arcs directed away from the root downward arcs : arcs directed towards the root downward forest : subdigraph induced by the downward arcs

$\operatorname{unvd}(A) \leq \frac{3}{2} n+\frac{3}{2} k-2$: the lemma
$\mathcal{C}_{r}^{\downarrow}$: set of components of the downward forest

$$
\gamma_{r}^{\downarrow}=\sum_{C \in \mathcal{C}_{r}^{\downarrow}}\left(|V(C)|+\left|L^{-}(C)\right|-2\right)
$$

Lemma If r is a source, then A is $\left(n+k-1+\gamma_{r}^{\downarrow}\right)$-unavoidable.
$\operatorname{unvd}(A) \leq \frac{3}{2} n+\frac{3}{2} k-2$: the lemma
$\mathcal{C}_{r}^{\downarrow}$: set of components of the downward forest

$$
\gamma_{r}^{\downarrow}=\sum_{C \in \mathcal{C}_{r}^{\downarrow}}\left(|V(C)|+\left|L^{-}(C)\right|-2\right)
$$

Lemma If r is a source, then A is $\left(n+k-1+\gamma_{r}^{\downarrow}\right)$-unavoidable.

$\operatorname{unvd}(A) \leq \frac{3}{2} n+\frac{3}{2} k-2$: the lemma
$\mathcal{C}_{r}^{\downarrow}$: set of components of the downward forest

$$
\gamma_{r}^{\downarrow}=\sum_{C \in \mathcal{C}_{r}^{\downarrow}}\left(|V(C)|+\left|L^{-}(C)\right|-2\right)
$$

Lemma If r is a source, then A is $\left(n+k-1+\gamma_{r}^{\downarrow}\right)$-unavoidable.

n_{i} vertices; k_{i} in-leaves
$\operatorname{unvd}(A) \leq \frac{3}{2} n+\frac{3}{2} k-2$: the lemma
$\mathcal{C}_{r}^{\downarrow}$: set of components of the downward forest

$$
\gamma_{r}^{\downarrow}=\sum_{C \in \mathcal{C}_{r}^{\downarrow}}\left(|V(C)|+\left|L^{-}(C)\right|-2\right)
$$

Lemma If r is a source, then A is $\left(n+k-1+\gamma_{r}^{\downarrow}\right)$-unavoidable.

n_{i} vertices; k_{i} in-leaves $k_{i}-1$ new vertices
unvd $(A) \leq \frac{3}{2} n+\frac{3}{2} k-2$: concluding
A : tree rooted in r with n nodes and k leaves.
$\gamma_{r}^{\downarrow}=\sum_{C \in \mathcal{C}_{r}^{\downarrow}}\left(|V(C)|+\left|L^{-}(C)\right|-2\right)$

Pick r such that $\min \left(\gamma_{r}^{\uparrow}, \gamma_{r}^{\downarrow}\right)$ is minimum.
W. I. o. g. this minimum is attained by γ_{r}^{\downarrow}.
$\gamma_{r}^{\uparrow}+\gamma_{r}^{\downarrow} \leq n+k-2$, so $\gamma_{r}^{\downarrow} \leq \frac{1}{2}(n+k)-1$
r is source.

So, by the Lemma, A is $\left(\frac{3}{2} n+\frac{3}{2} k-2\right)$-unavoidable.
unvd $(A) \leq n+O\left(k^{2}\right)$: cutting the tree

Theorem (Thomason, 1986)
P non-directed path of order n with first and last block of length 1.
T tournament of order $n+2$ and $X, Y \subseteq V(T),|X|,|Y| \geq 2$. If $P \neq \pm(1,1,1)$, then there is a copy of P in T with origin in X and terminus in Y.
unvd $(A) \leq n+O\left(k^{2}\right)$: cutting the tree

Theorem (Thomason, 1986)
P non-directed path of order n with first and last block of length 1.
T tournament of order $n+2$ and $X, Y \subseteq V(T),|X|,|Y| \geq 2$. If $P \neq \pm(1,1,1)$, then there is a copy of P in T with origin in X and terminus in Y.

unvd $(A) \leq n+O\left(k^{2}\right)$: cutting the tree

Theorem (Thomason, 1986)
P non-directed path of order n with first and last block of length 1.
T tournament of order $n+2$ and $X, Y \subseteq V(T),|X|,|Y| \geq 2$. If $P \neq \pm(1,1,1)$, then there is a copy of P in T with origin in X and terminus in Y.
unvd $(A) \leq n+O\left(k^{2}\right)$: cutting the tree

Theorem (Thomason, 1986)
P non-directed path of order n with first and last block of length 1.
T tournament of order $n+2$ and $X, Y \subseteq V(T),|X|,|Y| \geq 2$. If $P \neq \pm(1,1,1)$, then there is a copy of P in T with origin in X and terminus in Y.

unvd $(A) \leq n+O\left(k^{2}\right):$ reduction to stubs
stub : tree such that
(i) every inner segment has at most three blocks; moreover, if it has three blocks then its first and third block have length 1 , and if it has two blocks then one of them has length 1.
(ii) every outer segment has length 1.

Lemma

Every stub of order n with k leaves is $(n+f(k))$-unavoidable,

$$
\begin{gathered}
\Downarrow \\
\text { every tree of order } n \text { with } k \text { leaves is } \\
(n+\max \{f(2 k-2 b)+b \mid 0 \leq b \leq k-3\}) \text {-unavoidable. }
\end{gathered}
$$

unvd $(A) \leq n+O\left(k^{2}\right)$: organizing the stubs

unvd $(A) \leq n+O\left(k^{2}\right)$: organizing the stubs

unvd $(A) \leq n+O\left(k^{2}\right)$: organizing the stubs

unvd $(A) \leq n+O\left(k^{2}\right)$: organizing the stubs

$\operatorname{unvd}(A) \leq n+O\left(k^{2}\right)$: organizing the stubs

$\operatorname{unvd}(A) \leq n+O\left(k^{2}\right)$: organizing the stubs

Stubs: the rabbit hop

Lemma: $m \geq 4 k,\left(v_{1}, \ldots, v_{m}\right)$ median order of T. There are k internally disjoint 2-dipaths from v_{1} to $\left\{v_{m}-4 k+2, \ldots, v_{m}\right\}$.

